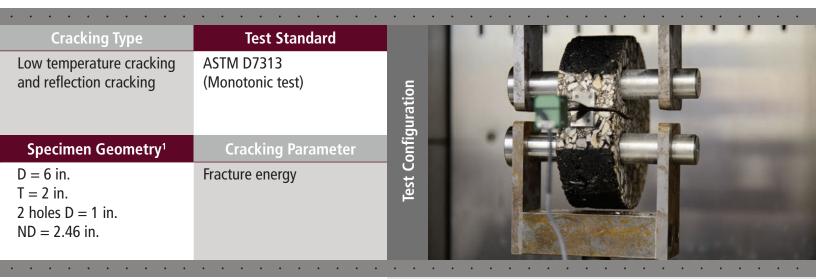

NCHRP 9-57

Experimental Design for Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures


CRACKING TESTS WORKSHOP

Sponsored by National Cooperative Highway Research Program Transportation Research Board of The National Academies and

Texas A&M Transportation Institute

DCT

TEST COMPLEXITY

Training Little time

Specimen Prep 4 cuts and 2 holes

Instrumentation Gluing 2 studs; mounting 1 clip

gauge

Testing

1–6 min.

Analysis Easy with data analysis software

Interpretation Quick and easy (pass/fail criteria)

Notes

1. D = diameter; L = length; W = width; T = thickness; ND = notch depth 2. AV = air voids; Pb = percent binder

CORRELATION TO FIELD PERFORMANCE

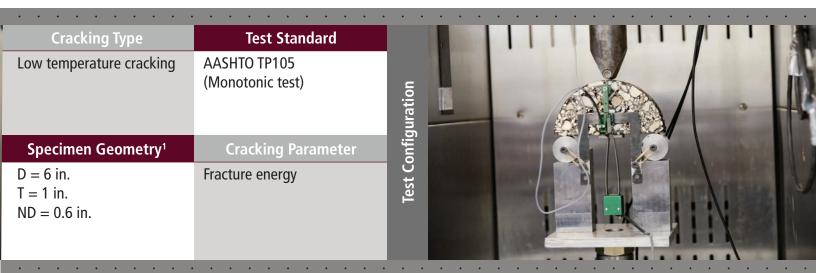
Good correlation with lowtemperature cracking validated at MnRoad

TEST VARIABILITY

Low (COV=10-15%)

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Asphalt binder, aggregate, RAP/RAS, and aging; insensitive to AV and P_b


EQUIPMENT COST AND AVAILABILITY

Commercially available; Cost: \$49,000

ADOPTION BY STATES

Adopted by Minnesota and Wisconsin; being considered by Colorado, South Dakota, and Montana

SCB AT LOW TEMPERATURE

TEST COMPLEXITY

Training Medium time

Specimen Prep 4 cuts

Instrumentation

Gluing 3 studs; mounting 1 extensometer and 1 clip gauge

Testing

30 min.

Analysis Easy with data analysis software

Interpretation Quick and easy (pass/fail criteria)

CORRELATION TO FIELD PERFORMANCE

Good correlation with lowtemperature cracking validated at MnRoad

TEST VARIABILITY

Medium (COV=20%)

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Asphalt binder, aggregate, RAP/RAS, AV, and P_b

EQUIPMENT COST AND AVAILABILITY

Commercially available; Cost: \$52,000

ADOPTION BY STATES

Being considered by Utah, South Dakota, Pennsylvania, and Montana

IDT FOR LOW TEMPERATURE CRACKING

· · · · · · · · · · · · · · · · · · ·					
Cracking Type	Test Standard				
Low temperature cracking	AASTHO T322	guration	Configuration		
Specimen Geometry ¹	Cracking Parameter	onfi			
D = 6 in. T = 1.5–2.0 in.	Creep compliance and tensile strength	Test Co			

TEST COMPLEXITY

Training Medium time

Specimen Prep 2 cuts

Instrumentation

Gluing 8 studs with a template; mounting 4 sets of extensometers

Testing

4–6 hours

Analysis

Easy with data analysis software

Interpretation

Longer time with cracking model to predict performance

Notes

1. D = diameter; L = length; W = width; T = thickness; ND = notch depth 2. AV = air voids; Pb = percent binder

CORRELATION TO FIELD PERFORMANCE

Creep compliance and tensile strength inputs to TCMODEL; calibrated and validated through original SHRP and MEPDG

EQUIPMENT COST AND AVAILABILITY

Hydraulic test machines can be used and may cost more than \$100,000

TEST VARIABILITY

Low (COV<11%)

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Asphalt binder, aggregate, RAP/RAS, aging

ADOPTION BY STATES

AASHTO T322 is required by AASHTOWare

TSRST/UTSST

· · · · · · · · · · ·	· · · · · · · · · · · ·	• •	 		
Cracking Type	Test Standard				
Low temperature cracking	AASHTO TP10/University of Nevada at Reno (Monotonic test)	uration			
Specimen Geometry ¹	Cracking Parameter	Configur			
L = 10 in. W = 2 in.	Fracture temperature (coefficient of thermal				
T = 2 in.	contraction from UTSST)	Test	· ·		
(D = 2.25 in.			No.	-/. 1	The section
L = 5.25 in.)					
••••••		• •	 		

TEST COMPLEXITY

Training Longer than medium time

Specimen Prep

4 cuts for long beam specimen; 2 cuts, 1 coring for cylinder specimen; gluing top and bottom platens

Instrumentation Mounting 2 LVDTs

Specimen Testing 3–5 hours

Data Analysis Easy with data analysis software

Data Interpretation Short and easy (pass/fail criteria)

CORRELATION TO FIELD PERFORMANCE

Validated with test sections during SHRP program; MnRoad test results showed moderate correlation with field performance

EQUIPMENT COST AND AVAILABILITY

Commercially available; Cost: \$98,000

TEST VARIABILITY

Low (COV= around 10%)

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Asphalt binder, aggregate, AV, P_b, and aging

ADOPTION BY STATES

Being considered by Nevada

TEXAS OT

Cracking Type	Test Standard	
Reflection cracking and bottom-up fatigue cracking	Tex-248-F (cyclic tests)	guration
Specimen Geometry ¹	Cracking Parameter	outin a second
L = 6 in. W = 3 in. T = 1.5 in.	No. of cycles (or fracture parameters: A and n)	Test O

.

TEST COMPLEXITY

• • • • • • •

Training Medium time

Specimen Prep 4 cuts; gluing to two bottom plates

Instrumentation None

Testing 30 min.–3 hours

Analysis Easy with data analysis software

Interpretation Short and easy (pass/fail criteria)

Notes

1. D = diameter; L = length; W = width; T = thickness; ND = notch depth 2. AV = air voids; Pb = percent binder

CORRELATION TO FIELD PERFORMANCE

.

Good correlation with reflection cracking validated in Texas, California, and New Jersey; promising correlation with fatigue cracking validated with FHWA-ALF and NCAT test track

EQUIPMENT COST AND AVAILABILITY

•

. .

Commercially available; Cost: \$46,000

TEST VARIABILITY

Relatively high (COV=30–50%)

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Binder, aggregate, P_b, RAP/RAS, aging, etc.

ADOPTION BY STATES

Adopted by Texas and New Jersey; being considered by Montana, Nevada, Florida, and Ohio

BENDING BEAM FATIGUE TEST

Cracking Type	Test Standard	
Bottom-up fatigue cracking	AASHTO T321 (cyclic tests)	Configuration
Specimen Geometry ¹	Cracking Parameter	
L = 15 in. W = 2.5 in. T = 2 in.	No. of cycles (or fatigue equation)	Test C

TEST COMPLEXITY

Training Medium time

Specimen Prep Large slab; 4 cuts

Instrumentation Gluing 1 stud and mounting 1 LVDT

Specimen Testing 1 hour to days

Data Analysis Easy with data analysis software

Data Interpretation Short and easy (pass/fail criteria)

CORRELATION TO FIELD PERFORMANCE

Correlation with bottom-up fatigue cracking historically validated

EQUIPMENT COST AND AVAILABILITY

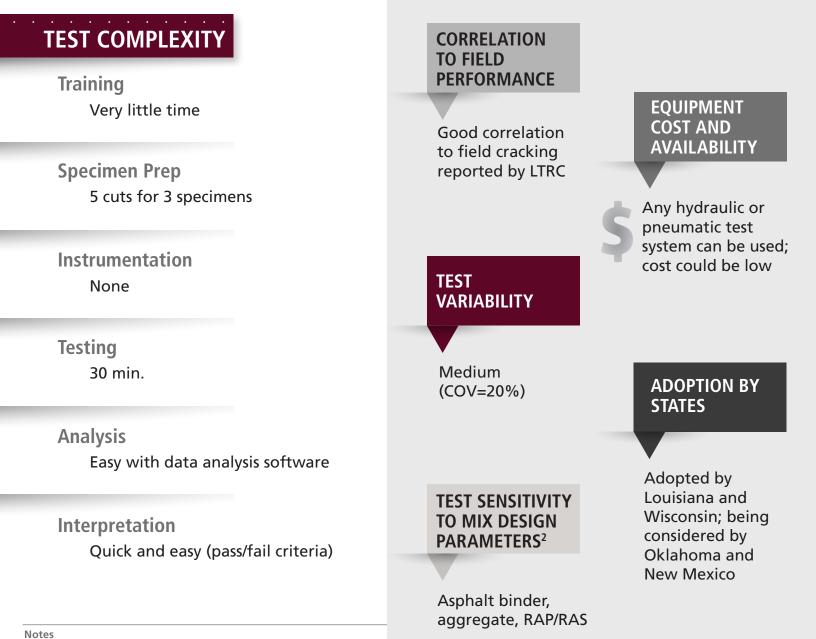
Frame (fixture) commercially available. Universal testing machine needed; could be > \$100,000

Very high (COV>50%)

VARIABILITY

TEST

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²


Asphalt binder, aggregate, RAP/RAS, aging, etc.

ADOPTION BY STATES

California—special pavement design; being considered by Nevada and Georgia

SCB AT INTERMEDIATE TEMPERATURE

	· · · · · · · · · · · · · · · · · · ·	• • • •	
Cracking Type	Test Standard		
Top-down fatigue cracking and reflection cracking	LTRC (Monotonic test)	Configuration	
Specimen Geometry ¹	Cracking Parameter	onfi	
D = 6 in. T = 2.25 in. ND = 1, 1.25, and 1.5 in.	Critical energy release rate	Test C	

1. D = diameter; L = length; W = width; T = thickness; ND = notch depth 2. AV = air voids; Pb = percent binder

IDT FOR TOP-DOWN CRACKING

Cracking Type	Test Standard			
Top-down cracking	University of Florida: M _r test (optional), D _t test, and tensile strength test (cyclic and monotonic tests)	Configuration		
Specimen Geometry ¹	Cracking Parameter	onfiç		
D = 6 in. T = 1.5–2.0 in.	Energy ratio	Test C		

TEST COMPLEXITY

Training Medium time

Specimen Prep 2 cuts

Instrumentation

Gluing 8 studs with a template; mounting 4 sets of extensometers

Testing

1–2 hours

Analysis Easy with data analysis software

Interpretation Short and easy (pass/fail criteria)

CORRELATION TO FIELD PERFORMANCE

Validated with field cores in Florida and confirmed at NCAT test track

TEST VARIABILITY

Possibly low, similar to AASTHO T322

EQUIPMENT COST AND AVAILABILITY

Hydraulic test machines can be used and may cost more than \$100,000

ADOPTION BY STATES

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Insensitive to change in binder viscosity

Being considered for adoption by Florida

S-VECD

Cracking Type	Test Standard	
Bottom-up and top-down fatigue cracking	AASHTO TP107 (cyclic tests)	guration
Specimen Geometry ¹	Cracking Parameter	outig
S-VECD: D = 4 in. L = 5.1 in. (E*: D = 4 in. L = 6 in.)	Damage parameters (or predicted no. of cycles)	Test C

TEST COMPLEXITY

Training Longer than medium time

Specimen Prep

2 cuts and 1 coring; gluing top and bottom platens with a jig

Instrumentation

Gluing 6 studs with a special glue jig; mounting 3 LVDTs

Testing

1 hour to 1 day (2–3 more days if E* test is considered)

Analysis

Easy if using ALPHA-fatigue software

Interpretation

Longer time with pavement analysis programs (LVECD and VECD-FEP++) to predict pavement fatigue life

Notes

1. D = diameter; L = length; W = width; T = thickness; ND = notch depth 2. AV = air voids; Pb = percent binder

CORRELATION TO FIELD PERFORMANCE

S-VECD used with more advanced models (LVECD and VECD-FEP++) to simulate pavement performance; validated with FHWA-ALF test lanes and verified in North Carolina

TEST VARIABILITY

Low in general, but need further evaluation

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Sensitive to binder content, RAP, aging, etc. as reported by Richard Kim's study

EQUIPMENT COST AND AVAILABILITY

Commercially available; Cost: \$97,000

ADOPTION BY STATES

Being considered by Oklahoma, Georgia, Pennsylvania, and North Carolina

REPEATED DIRECT TENSION

••••••	•••••••••	· · · · · · · · · · · · · · · · · · ·
Cracking Type	Test Standard	
Bottom-up and top-down fatigue cracking	Texas A&M University (cyclic tests)	Configuration
Specimen Geometry ¹	Cracking Parameter	
D = 4 in. L = 6 in.	Paris' law parameters, endurance limit, healing properties, and average crack size	Test O

.

TEST COMPLEXITY

Training Longer than medium time

Specimen Prep 2 cuts and 1 coring; gluing top and bottom platens

.

Instrumentation Gluing 6 LVDT holders; mounting 3 LVDTs

Testing

1–2 hours

Analysis Easy with analysis software

Interpretation

Measured properties with pavement analysis system to predict pavement fatigue life

CORRELATION TO FIELD PERFORMANCE

.

. .

. .

. .

Correlations with bottom-up and top-down fatigue cracking being developed under several research projects; model and methods being validated with LTPP data

TEST VARIABILITY Universal test machine (MTS, AMPT) AMPT < \$100,000.

EQUIPMENT

AVAILABILITY

COST AND

Low in general, but need further evaluation

TEST SENSITIVITY TO MIX DESIGN PARAMETERS²

Model coefficients functions of AV, P_b, gradation; modulus, aging, etc.

ADOPTION BY STATES

Unknown

Saving Lives, Time and Resources